ECNU at SemEval 2016 Task 6: Relevant or Not? Supportive or Not? A Two-step Learning System for Automatic Detecting Stance in Tweets
نویسندگان
چکیده
This paper describes our submissions to Task 6, i.e., Detecting Stance in Tweets, in SemEval 2016, which aims at detecting the stance of tweets towards given target. There are three stance labels: Favor (directly or indirectly by supporting given target), Against (directly or indirectly by opposing or criticizing given target), and None (none of the above). To address this task, we present a two-step learning system, which performs two steps, i.e., relevance detection and orientation detection, in a pipeline-based processing procedure. Our system ranked the 5th among 19 teams.
منابع مشابه
INF-UFRGS-OPINION-MINING at SemEval-2016 Task 6: Automatic Generation of a Training Corpus for Unsupervised Identification of Stance in Tweets
This paper describe a weakly supervised solution for detecting stance in tweets, submitted to the SemEval 2016 Stance Task. Our approach is based on the premise that stance can be exposed as positive or negative opinions, although not necessarily about the stance target itself. Our system receives as input ngrams representing opinion targets and common terms used to denote stance (e.g. hashtags...
متن کاملSemEval-2016 Task 6: Detecting Stance in Tweets
Here for the first time we present a shared task on detecting stance from tweets: given a tweet and a target entity (person, organization, etc.), automatic natural language systems must determine whether the tweeter is in favor of the given target, against the given target, or whether neither inference is likely. The target of interest may or may not be referred to in the tweet, and it may or m...
متن کاملJU_NLP at SemEval-2016 Task 6: Detecting Stance in Tweets using Support Vector Machines
We describe the system submitted to the SemEval-2016 for detecting stance in tweets (Task 6, Subtask A). One of the main goals of stance detection is to automatically determine the stance of a tweet towards a specific target as ‘FAVOR’, ‘AGAINST’, or ‘NONE’. We developed a supervised system using Support Vector Machines to identify the stance by analyzing various lexical and semantic features. ...
متن کاملDeepStance at SemEval-2016 Task 6: Detecting Stance in Tweets Using Character and Word-Level CNNs
This paper describes our approach for the Detecting Stance in Tweets task (SemEval-2016 Task 6). We utilized recent advances in short text categorization using deep learning to create word-level and character-level models. The choice between word-level and characterlevel models in each particular case was informed through validation performance. Our final system is a combination of classifiers ...
متن کاملUWB at SemEval-2016 Task 6: Stance Detection
This paper describes our system participating in the SemEval 2016 task: Detecting stance in Tweets. The goal was to identify whether the author of a tweet is in favor of the given target or against. Our approach is based on a maximum entropy classifier, which uses surface-level, sentiment and domain-specific features. We participated in both the supervised and weakly supervised subtasks and rec...
متن کامل